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Abstract 

 Six earthquakes within the Zagros Mountains with magnitudes between 4.9 and 5.7 have 6 

been studied to determine their source parameters.  These events were selected for study because 

they were reported in open catalogs to have lower crustal or upper mantle source depths and 8 

because they occurred within an area of the Zagros Mountains where crustal velocity structure 

has been constrained by previous studies.  Moment tensor inversion of regional broadband 10 

waveforms have been combined with forward modeling of depth phases on short period 

teleseismic waveforms to constrain source depths and moment tensors.  Our results show that all 12 

six events nucleated within the upper crust (<11 km depth) and have thrust mechanisms.  This 

finding supports other studies that call into question the existence of lower crustal or mantle 14 

events beneath the Zagros Mountains.   

Introduction 16 

 The depth distribution of earthquakes in convergent plate boundaries and the implications 

it has for rheologic strength distribution in the lithosphere has been highly debated for many 18 

years (Baker, et al., 1993; Bird, et al., 1975; Jackson, 2002; Maggi, et al., 2000; Nowroozi, 1971; 

Tatar, et al., 2004).  Much of the debate has centered on the seismically active Zagros 20 

Mountains, where plate subduction is believed to have ceased c. 5 Ma (Berberian and King, 

1981).  Early seismic studies of the region using the event location information in the ISC and 22 

USGS catalogs reported earthquakes in the upper crust and upper mantle, but not in the lower 
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crust (Bird, et al., 1975; Nowroozi, 1971).  More recent studies, however, have reexamined 24 

earthquake depths and suggest that earthquakes occur only within the upper crust (Baker, et al., 

1993; Jackson, 2002; Maggi, et al., 2000; Tatar, et al., 2004).  For example, Maggi et al. (2000) 26 

modeled teleseismic P and SH waveforms to determine earthquake source depths in several 

regions, including the Zagros Mountains, for events reported to have nucleated within the lower 28 

crust or upper mantle.  All 13 events investigated in that study for the Zagros Mountains were 

found to have nucleated within the upper 20 km of the crust.   30 

 For several decades, the preferred model of lithospheric strength and earthquake depth 

distribution has been the so-called “Jelly-Sandwich Model” (Jackson, 2002).  In this model, the 32 

lithosphere consists of a strong upper crust, a weak, ductile lower crust, and a strong upper 

mantle.  This three-layered lithospheric model was based on the assumption that rock strength is 34 

primarily a function of composition (Brace and Byerlee, 1970; Brace and Kohlstedt, 1980; Chen 

and Molnar, 1983) and the thermal structure of the lithosphere (Afonso and Ranalli, 2004; Brace 36 

and Kohlstedt, 1980).  Other studies, however, have argued that the depth of the brittle-ductile 

transition may also depend on fluid content (Hirth and Kohlstedt, 1996; Mackwell, et al., 1998).  38 

Lithospheric models that account for these factors show considerable variability in the depth 

distribution of lithospheric strength (Brace and Kohlstedt, 1980; Hirth and Kohlstedt, 1996; 40 

Jackson, 2002; Mackwell, et al., 1998). 

 In this paper, we contribute to the debate about the depth extent of continental seismicity 42 

and the strength of the lithosphere by studying six moderate earthquakes that occurred between 

1997 and 2003 in the central Zagros Mountains for which lower crustal or upper mantle focal 44 

depths have been reported in a number of catalogs (e.g. CMT, NEIC, ISC) (Table 1).  We focus 

on these events in the 1997-2003 time interval because they occurred where crustal structure is 46 
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best constrained within the Zagros Mountains and because broadband seismic data at regional 

distances were provided from the Saudi Arabian National Digital Seismic Network (SANDSN).  48 

We have combined these data with other data from open stations to constrain source depth and 

focal mechanism for each event by inverting for moment tensors and performing a grid search 50 

over source depth.  Source depths have been further constrained by forward modeling teleseismic 

depth phases using short period data from GSN and NORSAR stations.  52 

Geologic Setting 

The Zagros Mountains of southern Iran, Turkey, and Iraq are part of a large tectonic 54 

region that marks the convergent boundary between the Arabian and Eurasian plates following 

the closure of the Neo-Tethys Sea. The Zagros Mountains are primarily located along the 56 

southwestern border of Iran, where GPS measurements indicate that oblique convergence occurs 

at a rate of 2.2 cm per year (Vernant et al., 2004).  The Zagros Mountains parallel the coast of the 58 

Persian Gulf for approximately 1200 km from Turkey in the north to the Strait of Hormoz in the 

south and range in width from 200 to 300 km (Tatar, et al., 2004) (Figure 1).  Seismicity rates in 60 

this region are among the highest in the world for a fold and thrust belt (Talebian and Jackson, 

2004; Tatar, et al., 2004).  62 

 Previous geophysical studies provide constraints on crustal structure for parts of the 

Zagros region.  In the central Ghir region of the Zagros Mountains (see box in Figure 1), a 64 

combined study of local P- and S-wave traveltimes and teleseismic receiver functions indicates 

that the crustal thickness averages 47 km (Hatzfeld, et al., 2003).  This estimate of crustal 66 

thickness is consistent with thicknesses of 45±2 km determined by receiver functions (Paul, et 

al., 2006).  The crust is divided into an upper, 11 km thick, sedimentary layer and a lower, 35 km 68 

thick, crystalline basement layer (Hatzfeld, et al., 2003).  A Bouguer gravity anomaly study by 
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Snyder and Barazangi (1986) found that Moho depth increased smoothly from 40 km in the 70 

south beneath the Persian Gulf to 65 km just north of the Zagros Mountains (Figure 1).  

 The Zagros Mountains are bordered to the northeast by the Iranian Plateau.  This plateau 72 

has an average elevation of 1500 m (Zamani and Hashemi, 2000).  A low mountain range 

separates the Iranian Plateau into two distinct regions, with the eastern region extending into 74 

Afghanistan (Zamani and Hashemi, 2000).  Surface wave tomography indicates the presence of a 

low velocity zone beneath the Iranian Plateau (Maggie and Priestly, 2005).  The unusual 76 

presence of a low velocity zone in a convergent margin and the existence of Neogene volcanism 

within the plateau (Berberian and King, 1981) indicate a warm, buoyant upper mantle beneath 78 

the Plateau (Maggie and Priestly, 2005). 

 To the southeast, the Zagros Mountains are bordered by the Makran.  The Oman Line, or 80 

the Minab Fault, separates these two regions.  Although both regions were created by the 

convergence along the Eurasian plate, they differ in convergence mechanisms.  The Zagros 82 

Mountains have undergone continent-continent convergence with the Arabian plate for the past 5 

MY without evidence for continuing subduction (Berberian and King, 1981) while subduction of 84 

the Indian Oceanic plate continues beneath the Makran (Quittmeyer and Jacob, 1979).  Thus, 

seismicity extends to much greater depths in the Makran relative to the Zagros Mountains. 86 

 The Arabian Platform and the Arabian Shield comprise the Arabian Peninsula to the south 

of the Zagros Mountains, where the majority of the seismic stations used in this study are 88 

located.  The Arabian Platform lies southwest of the Persian Gulf.  Sedimentary thickness on the 

Platform increases towards the Persian Gulf, where it reaches a maximum thickness of nearly 10 90 

km (Seber et al., 1997).  Total crustal thickness in this region is modeled to be 40 km (Rodgers et 

al., 1999).  The Arabian Shield is uplifted relative to the Platform to its north, in spite of having a 92 
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thinner crust (36 km).  This anomalous uplift and the presence of recent volcanism in the Shield 

indicate the existence of mantle upwelling in this region (Camp and Roobol, 1992). 94 

Datasets & Methods 

Datasets 96 

 The data used in this study comes from a collection of both open and closed seismic 

networks at regional and teleseismic distances. The majority of the data for determining moment 98 

tensors comes from the Saudi Arabia National Digital Seismic Network (SANDSN) (Figure 1).  

This network consists of 11 short-period and 27 broadband three-component seismometers 100 

located in the Arabian Shield and Plateau.  Data for this study were provided by the SANDSN 

for the 7 years from 1997 to 2003.  Complimentary broadband seismic data for the same time 102 

period was also used from open stations (e.g. CSS, EIL, RAYN) in the region belonging to GSN 

and international cooperative networks. The teleseismic waveforms used for modeling depth 104 

phases were obtained from GSN stations as well as from NORSAR (Norwegian Seismic Array).   

 Earthquakes were considered for inversion if they occurred during the time frame for 106 

which we had access to SANDSN data, if they were listed as having depths of at least 15 km in 

the ISC catalog, if they were located within the central Zagros region where crustal structure is 108 

best constrained by previous studies (Figure 1), and if they were well recorded by at least three 

regional stations. 110 

Methodology 

 For each earthquake, moment tensor inversion was used to determine source mechanisms 112 

from the regional waveforms, filtered between 0.02 and 0.029 Hz, using the method of Randall 

et al. (Randall, et al., 1995).  Because the earthquakes studied here have moderate magnitudes 114 

(4.9 < Mw < 5.7), the source time function was assumed to be a delta function.  Regional 
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seismograms were selected based upon visual inspection of quality throughout the wavetrain. 116 

Moment tensor inversion was performed for each event over a depth range of 0 to 80 km in 1 to 

5 km increments.  RMS error and visual inspection of the fit of synthetic seismograms to the data 118 

were considered to determine the best source depth for each earthquake.  

 A single velocity model was used for the calculation of the Green’s functions (Table 2).   120 

The velocity model uses the crustal structure for the Arabian Platform from Rodgers et al. (1999) 

and the IASP91 mantle model (Kennett and Engdahl, 1991).  This model was chosen because the 122 

largest portion of the event to station travel paths lie within the Arabian Platform.  

 To confirm and refine source depths, arrival times for teleseismic pP and sP phases 124 

recorded between distances of 30° and 90° were modeled using ray theory.  The goal of 

modeling depth phases was only to constrain the source depth, so no source time function or 126 

instrument response was included; efforts at modeling focused on matching arrival times of the 

depth phases.  A second velocity model representative of structure in the central Zagros was used 128 

in this modeling (Table 3).  The model consists of crustal structure from Hatzfeld et al. (2003) 

over a half-space mantle.  130 

 To find clear teleseismic depth phases for each event, data from a wide range of GSN 

stations were examined after filtering between 0.5 and 3 Hz, in addition to stacked waveforms 132 

from NORSAR.  Because of the moderate size of the earthquakes in this study, only a small 

number (1-3) of short-period waveforms were found for each event that showed clear depth 134 

phases.   

 A simple grid search was used to find the source depth that best matched the timing of the 136 

observed depth phases.  In this grid search, the best-fitting strike, dip, and rake obtained from the 

moment tensor inversion for a given depth were used to generate halfspace synthetics of the pP 138 
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and sP arrivals. The best-fitting source depth range was determined by the match of either the pP 

or the sP arrival time, or both to the observed waveforms.  140 

Discussion and Conclusions 

 Table 1 gives the depths and moments for the six events examined and Table 5 provides 142 

the moment tensor elements for the events.  Figure 2 shows the results of the moment tensor 

inversion and depth phase matching for one sample event.  Results for additional events can be 144 

found in the electronic supplement [SUPPLEMENT].  For all events, focal mechanisms indicate 

a thrust-faulting source, with some degree of strike-slip motion, as has been observed previously 146 

for the central Zagros by many studies.  No systematic change in quality of fit with increasing 

distance is found. Depths from moment tensor inversion are less well constrained that those from 148 

depth phase modeling.  We attribute this difference to the inherent difficulty of constraining 

depths from surface waves and therefore prefer the depths calculated by depth phase modeling, 150 

which is a method designed to well constrain source depths. In all cases, where RMS error from 

moment tensor inversion has a clear minimum, the range of optimal depths determined by 152 

moment tensor inversion and from depth phase modeling show broad agreement, allowing 

source depth to be constrained to within a few kilometers. 154 

 The six events have source depths between 2 km and 11 km ±2 km.  Based on a priori 

knowledge of the crustal structure of the central Zagros Mountains (Hatzfeld, et al., 2003; 156 

Snyder and Barazangi, 1986), all the events nucleated within the sedimentary upper crust, a 

finding that agrees with recent studies of seismic deformation in the area (e.g. Lohman and 158 

Simons, 2005; Nissen et al, 2007).    These results indicate that deformation in the upper crust is 

not restricted to ductile folding as suggested by some studies (e.g. Hatzfeld et al., 2003; Tatar et 160 

al., 2004).  
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 Tables 1 and 2 can be used to compare source depths from this study in relation to depths 162 

reported for the same events in other catalogs.  For all six events, the depths reported in the 

catalogs were deeper than those obtained in our analysis.  Consequently, our results are 164 

consistent with other seismological studies of the region which have found that seismicity is 

limited to the upper crust within the Zagros Mountains (Maggi, et al., 2000).  In contrast with the 166 

discrepancy of earthquake depths, we find no systematic increase or decrease between the 

moment magnitudes we obtained and those in other catalogs, and in all cases our magnitudes 168 

differ from those published in the CMT catalog by .2 magnitude units or less (Table 1). 

 The moment tensor solutions calculated for these six events include some degree of non-170 

double couple motion, which is proportionally similar to the non-double couple components 

listed in the CMT catalog.  Part D of Figure 2 shows the double couple component of our best 172 

solution and for the CMT solution.  Although the solutions are broadly similar, there are some 

differences in nodal plane orientations. 174 

Comparison of the source depths calculated via moment tensor inversion of the regional 

surface waves and from modeling of teleseismic pP and sP depth phase arrival times shows good 176 

agreement between the two methods.  The smaller of the events presented here approach the 

minimum magnitude threshold for which teleseismic waveforms can be used for moment tensor 178 

inversion or for depth phase modeling.  The good agreement between depths obtained from 

moment tensor inversion and depth phase modeling achieved for these six moderate events 180 

indicates that our method of modeling regional waveforms bandpassed between .02 and .029 Hz 

to accurately estimate source depths may be applied to other moderate events in this area for 182 

which teleseismic depth phases are not available for constraining source depth. 

 We acknowledge that the focus on matching surface wave amplitude and timing may limit 184 
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our ability to model potentially deeper events, as these events typically excite surface waves with 

smaller amplitudes, which may not be well recorded with high signal-to-noise ratios at regional 186 

distances, and therefore cannot be modeled the methodology in this study.  This and the limited 

number of earthquakes modeled prevent us of from eliminating the possibility that some deeper 188 

earthquakes may occur in the Zagros Mountains. 

 In summary, we find no evidence from this study for lower crustal or mantle events in the 190 

central Zagros Mountains, but find a systematic over-estimation of depths in global catalogs.  

This finding supports previous work that calls into question the existence of lower crustal and 192 

mantle earthquakes beneath the Zagros Mountains and contributes to recent papers that study 

small to moderate sized earthquakes, which may not be accurately represented in global catalogs 194 

(e.g. Lohman and Simons, 2005).   
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 208 

Data and Resources:  Data used in this study were from the Saudi Arabian National Digital 

Seismic Network, from the NORSAR Array, and from the Global Seismic Network.  Plots were 210 

created using Generic Mapping Tools. 
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Table 1. Event Information 

Evt # Date Time 
Latitude, 

Longitude 

MTI Depth Phases 

Mw Depths (km) Depths (km) 

1 11/13/98 13:01:10 27.793N, 53.640E 5.5 6-10 4-7 
2 10/31/99 15:09:40 29.413N, 51.807E 5.4 5-11 4-5 
3 3/1/00 20:06:29 28.395N, 52.848E 5 7-11 7-10 
4 4/13/01 1:04:27 28.281N, 54.872E 4.9 5-10 8-11 
5 2/17/02 13:03:53 28.093N, 51.755E 5.2 2-10 2-6 
6 7/10/03 17:06:38 28.355N, 54.169E 5.7 7-11 4-7 
Moment Tensor Inversion (MTI) 438 
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Table 2. Depths and Magnitudes from Public Catalogs 456 

Evt # Date Time 
EHB ISC CMT 

Depth(km) Depth(km) mb Depth(km) Mw 

1 11/13/98 13:01:10 9 15 5.3 f33 5.4 
2 10/31/99 15:09:40 15 38 4.9 f33 5.2 
3 3/1/00 20:06:29 20 47 5.0 f15 5.0 
4 4/13/01 1:04:27 20 29 4.9 26 5.1 
5 2/17/02 13:03:53 15 f15 5.5 f33 5.3 
6 7/10/03 17:06:38 11 19 5.8 f15 5.7 
International Seismic Catalog (ISC), Harvard Centroid Moment Tensor Catalog (CMT), EHB 
(Engdahl, et al., 2006; Engdahl, et al., 1998).  “f” indicates a fixed depth. 458 
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Table 3. Velocity Model Used for Moment Tensor Inversion  476 
Depth (km) P-wave Velocity (km/s) S-wave Velocity (km/s) 

1-4 4.00 2.31 
4-20 6.22 3.59 
20-38 6.44 3.72 
38-42 7.30 4.21 

42-74.5 8.04 4.48 
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Table 4. Velocity Model Used for Modeling Teleseismic Depth Phases 
Depth (km) P-wave Velocity (km/s) S-wave Velocity (km/s) 

1-11 4.70 2.71 
11-19 5.85 3.38 
19-46 6.50 3.75 
46- 8.00 4.62 
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 514 
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Table 5.  Moment Tensor Elements (dyne-cm) 518 
Event 

# Depth Mxx Mxy Mxz Myy Myz Mzz Mo 

1 5 0.847e24 0.205e24 -0.152e25 0.634e23 0.753e24 -0.911e24 1.93E24 
2 5 0.237e24 0.114e24 -0.569e24 0.258e24 -0.105e25 -0.495e24 1.34E24 
3 8 0.181e24 -0.397e23 -0.202e23 -0.167e23 0.278e24 -0.164e24 3.87E23 
4 9 0.179e24 0.432e23 0.118e24 0.234e23 -0.300e23 -0.202e24 2.31E23 
5 4 0.380e24 0.199e24 -0.393e24 0.550e23 0.561e24 -0.435e24 8.23E23 
6 5 0.271e25 -0.212e24 0.225e25 -0.607e24 -0.328e25 -0.210e25 4.69E24 
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Figure 1. A map showing the Zagros Mountains, nearby tectonic features, and earthquake 538 

locations.  White triangles are the regional stations used for moment tensor inversion and the stars 

are the six events studied.  The solid black line indicates the border between the Arabian Platform 540 

and Shield.  The solid gray line indicates the location of a combined receiver function and local P- 

and S-wave traveltime study (Hatzfeld, et al., 2003) and the dotted gray box indicates the location 542 

of a gravity and seismic study of  (Snyder and Barazangi, 1986a).  Geologic regions are labeled in 

white as follows:  AS- Arabian Shield, AP- Arabian Platform, IP - Iranian Platform, and MK - 544 

Makran region. 

 546 

Figures 2.   A) Fit of full waveform synthetics to observed data from moment tensor inversion.  

Observations are shown as a solid line, while synthetics are shown as a dashed line.  The bar 548 

beneath each set of waveforms indicates a scale of 100 seconds.  B) The best fitting focal 

mechanism at each depth is shown plotted against RMS error.  C) Observed depth phases are 550 

shown bracketed by synthetics for the maximum and minimum possible source depths.  The bar 

beneath the seismograms indicates a time scale of 5 seconds.  Records from NORSAR arrays are 552 

stacked to improve signal-to-noise ratios, but where GSN stations are used, records from only a 

single station are shown.  D) Our best double couple solution and source depth are shown along 554 

with the double couple CMT solution and source depth. 
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Figure 1.:  The Zagros Mountains and locations of 
earthquakes.  The dotted gray box indicates 
where crustal structure is constrained by gravity 
and seismic data [Snyder & Barazangi, 1986].  The 
solid gray line shows where crustal structure is 
constrained by receiver function analysis.
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